2024精讀課程現正火熱招生!等GJ數學補習團隊幫你數學絕地翻身!

DSE 數學公式 (Maths Formula): Deductive Geometry 演繹幾何定理公式

Deductive Geometry

Angles Properties
a + b = 180°

adj. ∠s on st. line

a + b + c = 360°

∠s at a pt.

a = b

vert. opp. ∠s

a + b + c = 180°

∠ sum of Δ

a + b = c_1

ext. ∠ of Δ

*快捷版,可不記

 

 

Properties Prove
Parallel lines

***見到F/Z/C shape先好用

If AB // CD, then a = b

corr. ∠s, AB // CD

If a = b, then AB // CD

corr. ∠s equal

If AB //CD, then a = b

alt. ∠s, AB // CD

If a = b, then AB //CD

alt. ∠s equal

If AB // CD,

then a + b = 180°

int. ∠s, AB // CD

If a + b = 180°, then AB // CD

int. ∠s supp.

 

 

Angles of convex polygon
a_1 + a_2 + a_3 + … + a_n = (n − 2) × 180°

∠ sum of polygon

Regular 正多邊形

Each interior angle = \frac{(n − 2) × 180°}{n}

x_1 + x_2 + x_3 + … + x_n = 360°

sum of ext. ∠s of polygon

→ Regular 正多邊形

Each exterior angle = \frac{360º}{n}

 

 

/ Δs

Congruent Triangles

(P.S. congruent Δ 係 similar Δ其中一種)

Similar Triangles

If ΔABC ≅ΔXYZ, then ∠A = ∠X, ∠B = ∠Y, ∠C = ∠Z (corr. ∠s, ≅Δs)

AB = XY, BC = YZ, CA = ZX (corr. sides, ≅Δs)

 

If ΔABC ~ ΔXYZ, then ∠A = ∠X, ∠B = ∠Y, ∠C = ∠Z (corr. ∠s, ≅Δs)

\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX} (corr. sides, ~Δs)

 

 

Properties of quadrilateral
Properties Prove
∠P + ∠Q = 180°

∠R + ∠S = 180º

Prop. of trapezium

90º

+ all prop. of //gram

AD = BC & AB = DC

∠A = ∠C & ∠B = ∠D

AO = CO & BO = DO

AD = BC & AD // BC

prop. of //gram

opp. sides equal

opp. ∠s equal

diags. bisect each other

2 sides equal and //

diagonals are ⊥

4 sides equal

Interiors are bisected by diagonals

+ all prop. of //gram

Properties of rhombus

 

 

→ Right-angled triangle

🌟見到直角唔係畢氏定理就係sin/cos/tan

sin θ = \frac{opp.對}{hyp.斜} = \frac{a}{c}

cos θ = \frac{adj.鄰}{hyp.斜} = \frac{b}{c}

tan θ = \frac{opp.對}{adj.鄰} = \frac{a}{b}

 

a^2 + b^2 = c^2 (pyth. Them.)

If a^2 + b^2 = c^2, then ∠C = 90º (Converse of Pyth. Thm.)

 

→ Isosceles triangle

If AB = AC, then ∠ABC = ∠ACB (base ∠s, isos. Δ)

If ∠ABC = ∠ACB, then AB = AC (sides opp. equal ∠s)

 

If ΔABC is an isos. Δ,

then AD ⊥ BC & BD = DC & ∠BAD = ∠CAD (prop. of isos. Δ)

 

→ Equilateral Triangle

If AB = BC = CA, then ∠A, ∠B, ∠C = 60º, vice versa (prop. of equil. Δ)

 

→ Mid-point theorem and Intercept Theorem

If AE = EB and AF = FC, then EF // BC & EF = \frac{1}{2}BC (Mid-pt. theorem)

If AE = EB and EF // BC, then AF = FC (intercept theorem)

If AC = CE and AB // CD // EF, then BD = DF (intercept theorem)

 

→ Triangle inequality

a + b > c

b + c > a

c + a > b

 

→ Sine formula (2邊2角):

\frac{a}{sinA} = \frac{b}{simB} = \frac{c}{sinC}

 

→ Consine formula (3邊1角):

c^2 = a^2 + b^2 − 2abcosC

 

→ Center formula

 

→ Symmetry

Solid Plane of reflection Axis of rotation
Cube 立方體 9 13
Tetrahedron 四面體 6 7
Regular octahedron 正八面體 9 13

Axis of symmetry of n-sided regular polygon = n

Order of rotational symmetry of n-sided regular polygon = n

Number of diagonals of n-sided polygon = \frac{n(n − 3)}{2}

 

演繹幾何定理

Angles 特性
a + b = 180°

直線上的鄰角

a + b + c = 360°

同頂角

a = b

對頂角

a + b + c = 180º

Δ內角和

a + b = c_1

Δ外角

*快捷版,可不記

 

 

Properties Prove
平行線

***見到F/Z/C shape先好用

If AB // CD, then a = b

同位角,AB // CD

If a = b, then AB//CD

同位角相等

If AB // CD, then a = b

錯角,AB // CD

If a = b, then AB // CD

錯角相等

If AB // CD, then a + b = 180°

同旁內角,AB //CD

If a + b = 180º, then AB // CD

同旁內角互補

 

 

凸多邊形的角
a_1 + a_2 + a_3 + … + a_n = (n − 2) × 180°

多邊形的內角和

→ Regular 正多邊形

每隻內角 = \frac{(n − 2) × 180°}{n}

 

x_1 + x_2 + x_3 + … + x_n = 360°

多邊形的外角和

→ Regular 正多邊形

每隻外角 = \frac{360°}{n}

 

 

/ Δs
全等三角形

(P.S. 全等三角形 係 相似三角形 其中一種)

相似三角形

If ΔABC ≅ ΔXYZ, then ∠A = ∠X, ∠B = ∠Y, ∠C = ∠Z (全等三角形對應角)

\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX} (相似三角形對應邊)

 

四邊形的特性
特性 證明
∠P + ∠Q = 180°

∠R + ∠S = 180º

梯形性質

90º

+ 所有平行四邊形性質

AD = BC & AB = DC

∠A = ∠C & ∠B = ∠D

AO = CO & BO = DO

AD = BC & AD // BC

平行四邊形性質

對邊相等

對角相等

對角線互相平分

一組對邊相等且平行

對角線互相垂直

4 邊相等

對角線平分頂角

+ 所有平行四邊形性質

菱形性質

 

→ 直角三角形

🌟 見到直角唔係畢氏定理就係 sin/cos/tan

sin θ = \frac{對}{斜} = \frac{a}{c}

cos θ = \frac{鄰}{斜} = \frac{b}{c}

tan θ = \frac{對}{鄰} = \frac{a}{b}

a^2 + b^2 = c^2

If a^2 + b^2 = c^2, then ∠C = 90º(畢氏定理逆定理)

 

→ 等腰三角形

If AB = AC, then ∠ABC = ∠ACB(等腰Δ底角)

If ∠ABC = ∠ACB, then AB = AC(等角對邊相等)

If ΔABC is an isos. Δ, then AD ⊥ BC & BD = DC & ∠BAD = ∠CAD(等腰Δ性質)

 

→ 等邊三角形

If AB = BC = CA, then ∠A, ∠B, ∠C = 60º, vice versa(等邊Δ性質)

 

→ 中點定理及截線定理

If AE = EB and AF = FC, then EF // BC & EF = \frac{1}{2}BC(中點定理)

If AE = EB and EF // BC, then AF = FC(截線定理)

If AC = CE and AB // CD // EF, then BD = DF(截線定理)

 

→ 三角不等式

a + b > c

b + c > a

c + a > b

 

→ 正弦公式(2邊2角)

\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C}

 

→ 餘弦公式(3邊1角)

c^2 = a^2 + b^2 − 2ab cos C

 

→ 三角形的中心

 

→ 對稱

立體                                                  No 反射平面 旋轉軸
立方體 9 13
四面體 6 7
正八面體 9 13

正n邊形的對稱數 = n

正n邊形的旋轉折式數目 = n

正n邊形的對角線 = \frac{n(n−3)}{2}

 

適用題目:

DSE 2023 P1 Q7

DSE 2023 P1 Q8

DSE 2023 P1 Q17

DSE  2023 P1 Q19

DSE 2023 P2 Q18

DSE 2023 P2 Q19

DSE 2023 P2 Q20

DSE 2023 P2 Q21

DSE 2023 P2 Q22

DSE 2023 P2 Q23

DSE 2023 P2 Q38

DSE 2023 P2 Q40

Deductive Geometry 演繹幾何定理課程

相關資源

No data was found