上次我們分享了DSE數學公式大全(上集),今次就來看看剩下的數學公式及2022至2023年數學DSE的MC例子吧。相信各位學生只要掌握上下集的數學公式,並學會靈活運用它們至相關的應用試題上,那必定能夠在數學科中取得不錯的成績!
數學公式-Polynomials多項式
Dividend 被除數 f(x) = Divisor 除數 × Quotient 商式 + Remainder 餘式 |
Remainder Theorem 餘式定理 → When f(x) is divided by (ax – b), the remainder is f \left(\frac {b}{a} \right). 當f(x) 除以 (ax – b)時,餘數為 f\left(\frac{b}{a}\right) |
Factor Theorem 因式定理 → If f \left(\frac{b}{a}\right) = 0, then (ax – b) is the factor of f(x). 若f\left(\frac{b}{a}\right) = 0, 則 (ax – b) 為 f(x) 的因數 |
數學公式適用題目:
2022 DSE P2 Q9
設 g(x) = x^2+ax+b,其中 a 及 b 均為常數。若 g(x) 可被 x + 2a 整除,求當 g(x) 除以 x – 2a 時的餘數。
Let g(x) = x^2+ax+b, where a and b are constants. If g(x) is divisible by x + 2a, find the remainder when g(x) is divided by x – 2a.
A. -2a^2
B. 0
C. 2a^2
D. 4a^2
答案:D
2023 DSE P2 Q9
設h(x) = ax^6+16x^3+b,其中a及b 均為常數。若 h(x) 可被 2x – 3 整除,求當 h(x) 除以 2x+3 時的餘數。
Let h(x) = ax^6+16x^3+b, where a and b are constants. If h(x) is divisible by 2x – 3, find the remainder when h(x) is divided by 2x + 3.
A. -108
B. -54
C. 54
D. 108
答案:A
數學公式-Complex Number 複數
i = \sqrt{−1} i^2 = −1 i^3 = −i i^4 = 1 🌟每4個為一個循環 |
If a + bi = c + di , then a = c and b = d. |
For a complex number, a + bi , the real part is a and the imaginary part is b. 對於複數, a + bi , 實部為 a,虛部為 b |
If z = a + bi is real number, then b = 0. 若z = a + bi 為實數, 則 b = 0 |
If z = a + bi is purely imaginary number, then a = 0 and b ≠ 0. 若z = a + bi 為純虛數, 則a = 0 及 b ≠ 0 |
數學公式適用題目:
2022 DSE P2 Q35
設 z = 4 + 5i^{10} - ki^{15} + 6i^{21} + 2ki^{28},其中 k 為一實數。若 z 的實部與虛部相等,則 z 的實部為
Let z = 4 + 5i^{10} - ki^{15} + 6i^{21} + 2ki^{28} , where k is a real number. If the real part and the imaginary part of z are equal, then the real part of z is
A. 7。
B. 13。
C. 17。
D. 25。
答案:B
2023 DSE P2 Q34
若 k 為一實數,則 \frac{i}{k - i} + \frac{2}{k + i} 的實部為
If k is a real number, then the real part of \frac{i}{k - i} + \frac{2}{k + i} is
A. \frac{2k + 1}{k^2 - 1}
B. \frac{2k - 1}{k^2 + 1}
C. \frac{k + 2}{k^2 - 1}
D. \frac{k - 2}{k^2 + 1}
答案:B
數學公式-Quadratic Equations 二次方程
Quadratic Formula 二次公式: x = \frac{−b±\sqrt{b^2 − 4ac}}{2a} |
Discriminant 判別式: ∆ = b^2 − 4ac ∆ > 0 → Two distinct roots 兩個相異根 ∆ = 0 → One double root 一個相重實根 ∆ < 0 → No real roots 沒有實根 ∆ ≥ 0 → Have real roots 有實根 |
Sum of roots 兩根之和 and product of roots 兩根之積 For a quadratic equation with roots α and β : y = ax^2 + bx + c 對於二次方程其根為 及 : y = a^2 + bx + c Sum of roots 兩根之和 = α + β = − \frac{b}{a} Product of roots 兩根之積 = αβ = \frac{c}{a} |
Form equations 構建方程式 x^2– (sum of roots)x + (product of roots) = 0 x^2 – (兩根之和)x + (兩根之積) = 0 k(x – α)(x – β) = 0 , where k is a constant k(x – α)(x – β) = 0 , 其中 k 為常數 |
數學公式-Rate and Ratio Formula 率和比
距離、速率、時間: Distance 距離 = Speed 速率 × Time 時間 |
Map area 地圖面積: Map area 地圖面積 × ratio^2 ÷ unit^2 = Actual area 實際面積 |
Unit 單位: km → m → cm → mm x 1000 x 100 x 10 (調轉就除) day → hr → min → second x 24 x 60 x 60(調轉就除) kg → g x 1000(調轉就除) |
數學公式適用題目:
2023 DSE P2 Q12
某地圖的比例尺為 1:50 000。若一機場的實際面積為 10 km^2 ,則這機場在該地圖上的面積為
The scale of a map is 1:50 000. If the actual area of an airport is 10 km^2 , then the area of this airport on the map is
A. 2 cm^2
B. 4 cm^2
C. 20 cm^2
D. 40 cm^2
答案:D
數學公式-Estimation and Error Formula 誤差
Maximum absolutely error 最大絕對誤差 = \frac{smallest scale interval 最細可量度單位}{2} |
Absolute error 絕對誤差 = Measured value 量度值 (bigger) – Actual value 真確值 (smaller) OR Actual value 真確值 (bigger) – Measured value 量度值 (smaller) |
Relative Error 相對誤差 = \frac{Maximum absolute error 最大絕對誤差}{Measured value 量度值} = \frac{Absolute error 絕對誤差}{True value 真確值} |
Percentage Error 百分誤差= Relative error 相對誤差 × 100% |
Upper Limit 上限 = Measured value 量度值 + Maximum absolute error 最大絕對誤差 Lower Limit 下限 = Measured value 量度值 − Maximum absolute error 最大絕對誤差 Range 範圍: Lower limit 下限 ≤ Actual value 真確值 < Upper limit 上限 |
數學公式適用題目:
2022 DSE P2 Q6
已知 x 為一實數。若將 x 下捨入至三位有效數字,則結果為345。求 x 值的範圍。
It is given that x is a real number. If x is rounded down to 3 significant figures, then the result is 345. Find the range of values of x.
A. 344 < x ≤ 345
B. 345 ≤ x < 346
C. 345 < x ≤ 345.5
D. 344.5 ≤ x < 345.5
答案:B
2023 DSE P2 Q7
若 y = 73.8(準確至三位有效數字),求 y 值的範圍。
If y = 73.8 (correct to 3 significant figures), find the range of values of y.
A. 73.7 ≤ y < 73.9
B. 73.7 < y ≤ 73.9
C. 73.75 ≤ y < 73.85
D. 73.75 < y ≤ 73.85
答案:C
數學公式-Identities 恆等
a^2 - b^2 = (a + b)(a - b) (a + b)^2 = a^2 + 2ab +b^2 (a - b)^2 = a^2 - 2ab + b^2 a^3 + b^3 = (a + b)(a^2 - ab +b^2) a^3 - b^3 = (a - b)(a^2 +ab +b^2) 🌟小口缺: 正 × 正負正 負 × 負正正 |
數學公式適用題目:
2022 DSE P2 Q1
α^2-α-β^2+β=A. (α+β)(α-β+1)
B. (α+β)(α-β-1)
C. (α-β)(α+β+1)
D. (α-β)(α+β-1)
答案:D
2023 DSE P2 Q5
若 c 及 d 均為常數使得(x+2)(x+c) + 12 ≡ x(x+d)+6c(x+1),則 d =
If c and d are constants such that (x+2)(x+c) + 12 ≡ x(x+d)+6c(x+1), then d =
A. -13
B. -3
C. 3
D. 17
答案:A
數學公式-Percentage 百分比
Percentage change 百分變化:\frac{New value 新值−Old value 舊值}{Old value 舊值} × 100% ↳ Percentage increase 百分上升 / decrease 下降: 答案要正數 |
Increase 上升/ Decrease 下降: New value 新值 = Old value 舊值 × (1 ± \begin{array}{c} Increase上升\% \\ Decrease下降\% \end{array} ) 🌟容易搞亂乘除的同學,建議一律由舊值開始用「乘」,不知舊值則設x |
Profit 盈利 / Loss 虧蝕 / Discount 折扣: Profit 盈利 / Loss 虧蝕:Cost 成本 × (1 ± \begin{array}{c} Profit盈利\% \\ Loss虧蝕\% \end{array} ) = Selling price 售價 🌟一條式可以搵三樣野(Cost / % / SP),邊個唔知就設未知數 🌟容易搞亂乘除的同學,建議一律由成本開始用「乘」,不知成本則設x Selling price 售價 – cost 成本 = Profit 盈利 (Loss 虧蝕) Discount 折扣:Marked price 標價 (1 – Discount 折扣 %) = Selling price 售價 Marked price 標價 – selling price 售價 = Discount 折扣 |
Interest 利息 Simple Interest 單利息: A = P (1 + r% × T) Compound interest 複利息:A = P × (1 + \frac{r\%}{n})^ {Tn} Interest 利息 = A – P [A = Amount 本利和, P = Principal 本金, r = rate per annum 年利率, T = Number of years 時期, n = Number of periods in a year 每年期數] Remark: Compounded monthly 每月一結: n = 12 Compounded half-yearly 每半年一結: n = 2 Compounded quarterly 每季一結: n = 4 |
數學公式適用題目:
2022 DSE P2 Q11
存款 $88 000,年利率 6%,年期 4 年,複利計算,每月一結。求利息準確至最接近的元。
A sum of $88 000 is deposited at an interest rate of 6% per annum for 4 years, compounded monthly. Find the interest correct to the nearest dollar.
A. $ 21 120
B. $ 23 098
C. $ 23 803
D. $ 23 825
答案:C
2023 DSE P2 Q11
某外套的標價較其成本高60%。該外套以其標價七五折售出並獲利$104。求該外套的成本。
The marked price of a jacket is 60% above its cost. A profit of $104 is made by selling the jacket at a discount of 25% on its marked price. Find the cost of the jacket.
A. $416
B. $520
C. $728
D. $832
答案:B
數學公式-Quadratic Functions二次函數
General form 一般式: y = ax^2 + bx + c a = direction of opening 開口方向 b = slope 斜率 c = y-intercept 截距 Vertex form 頂點式: y = a(x – h)^2 + k |
Axis of symmetry 對稱軸: x = \frac{−b}{2a} Vertex 頂點: (h, k) = (\frac{−b}{2a}, −\frac{b^2−4ac}{4a}) |
If a > 0, then the minimum value of y is k and the corresponding value of x is h. 若a > 0, 則y 的極小值為k 及其對應的x 值為h。 If a < 0, then the maximum value of y is k and the corresponding value of x is h. 若a < 0, 則y 的極大值為k 及其對應的x 值為h。 |
數學公式適用題目:
2022 DSE P2 Q10
設 h 及 k 均為實常數使得 hk < 0 。下列有關 y=(h-x)(k-x)的圖像之敍述,何者正確?
Let h and k be real constants such that hk<0. Which of the following statements about the graph of y=(h-x)(k-x) are true?
I. 該圖像開口向上。 The graph opens upwards.
II. 該圖像有兩個x截距。 The graph has two x-intercepts.
III. 該圖像的y截距為正值。 The y-intercept of the graph is positive.
A. 只有 I 及 II
B. 只有 I 及 III
C. 只有 II 及 III
D. I 、II 及 III
答案:A
2023 DSE P2 Q10
下列有關 y=5+(x-3)^2的圖像之敍述,何者正確?
Which of the following statements about the graph of y=5+(x-3)^2 is true?
A. 該圖像開口向下。 The graph opens downwards.
B. 該圖像的x截距為3。 The x-intercept of the graph is 3.
C. 該圖像的y截距為5。 The y-intercept of the graph is 5.
D. 該圖像通過點(3,5)。 The graph passes through the point (3,5).
答案:D
數學公式-Laws of integral indices formula 整數指數律
Given a, b ≠ 0, 已知 a, b ≠ 0, a^m \times a^n = a^{m+n} \frac{a^m}{a^n} = a^{m-n} \left(a^m\right)^n = a^{mn} \left(ab\right)^m = a^m\times b^m \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} a^{-m} = \frac{1}{a^m} a^0 = 1 a^\frac{1}{m} = \sqrt[m]{a} , \text{(n is positive integer 其中m 為正整數)} |
數學公式適用題目:
2022 DSE P2 Q31
下列何者最小?
Which of the following is the least?
A. (-345)^{768}
B. 453^{-786}
C. (\frac{1}{435})^{867}
D. (\frac{2}{543})^{876}
答案:C
2023 DSE P2 Q3
4^{n+2}3^{2n+4}=
A. 6^{2n+4}
B. 6^{4n+8}
C. 12^{2n+4}
D. 12^{3n+6}
答案:A
此網頁所記錄的數學公式都是較為複雜且常用的課題,如果大家想了解更多簡單的課題如統計學、求積法、三角恆等、坐標幾何、等比等差以及圓方程等,可以瀏覽 Learnsmart 數學公式!
如對於DSE數學有任何問題,如私人補習、網上補習等,或者想知道更多關於DSE的資訊,歡迎Follow「學博教育中心 Learn Smart Education」 Facebook page 和 IG,以及 瀏覽 GJ MATHS 的 數學資源網站 及 IG,入面有齊所有你想知道和你需要知道的DSE資訊,助你全力應戰DSE!!