2025 課程現正火熱招生!等GJ數學補習團隊幫你數學絕地翻身!

【數學公式】數學公式大全(上集)+DSE卷二例題分享! 征服DSE數學考試無難度!

June 23, 2023
閱讀時間:11 分鐘

DSE數學公式繁多,如果想更好地理解和使用公式,那就需要加以例子一起學習。雖然市面上有不少數學應用程式可以一次過溫習所有數學公式,但它們缺少了相關的應用例子及數學題目。因此,GJ Math為各位DSE考生整理了數學公式大全,分為上下兩集,並附上2022至2023年度數學DSE卷二的例子。希望大家在背公式的同時,也有相應的DSE題目附助,幫助理解和應用公式。

數學公式- Logarithm對數

log a + log b = log ab
log a – log b = log \frac{a}{b}
log a^n = nlog a
log_{b} a = \frac{log_{c}a}{log_{c}b} , for any c > 0, c ≠ 1
log_{a}1 = 0
log_{a}a = 1

數學公式適用題目:

2022 DSE P2 Q32

已知 log_{a}y 為 x 的線性函數,其中 0 < a < 1。該線性函數的圖像在垂直軸上的截距及在水平軸上的截距分別為6及3。若 y = mn^x ,則下列何者正確?

It is given that log_{a}y is a linear function of x , where 0 < a < 1 . The intercepts on the vertical axis and on the horizontal axis of the graph of the linear function are 6 and 3 respectively. If y = mn^x , which of the following is/are true?

I. m<1

II. n<1

III. mn^3=1

A. 只有 I (I only)

B. 只有 II (II only)

C. 只有 I 及 III (I and III only)

D. 只有 II 及 III (II and III only)

答案:C

2022 DSE P2 Q33

log_{4}y = 2x-1(log_{4}y)^2= 20x-31,則 log_{2}y=

If log_{4}y = 2x-1 and (log_{4}y)^2= 20x-31 , then log_{2}y=

A. 1或2。 (1 or 2)

B. 2或4。 (2 or 4)

C. 3或7。 (3 or 7)

D. 6或14。 (6 or 14)

答案:D

數學公式- Deductive Geometry 演繹幾何定理

幾何定理 (Geometry)

Angles 角度Properties 特性
dMcoShz3ndeIM9qgwocYI5kEKzoipHLhFtD10gUa + b = 180°
adj. ∠s on st. line
直線上的鄰角
95aLSS0HUX9LoS1E4TmjzCxQ5gz0kWYyc0ZSI1pwqQZ dQ8u5uAXf9HR9v0Buroa + b + c = 360°
∠s at a pt.
同頂角
Lg6kpJWjRWNgaYYHcblRdgKIN9JogPPfKbOK 7dzNzN5ceA4KoGRmJWoJ80QcHibfc1N8UqxylJVfVy HsCuGBBE839mq u7eNDrb3DDVanAzb9bwoXD4ZLKtwdl0eJnW0Z eyqnNICy5Ze6O3JCNca = b
vert. opp. ∠s
對頂角
a + b + c = 180°
∠ sum of Δ
Δ內角和
kAB3rB7dleOzzcbSytpjMtIZUyIX Z5JPSLOTA2chAAITFNdMb 7NlNFEdH 64eGWhmtW4hnbF7ZhZfyOGmD0ejo2KhT0rHEUQEZgq0bnASefo3fqtSHm3tiZQSps3fSjB9uvm Uq 39fghEVksmFg8a + b = c_1
ext. ∠ of Δ
Δ外角
*快捷版,可不記

角與平行線 (Angles and Parallel Lines)

Situation 情況Properties 特性Prove 證明
SZLs4ZXnXSDsOIZDECsgSVFEbfJ1Q7kkwq94MuQU mvo FpWRSy9fMFCE5PVLvfCssuz2O9PIgtvyj4ppEW0sLHXRcqSSD42oCd gUwCOo0LIf AB // CD, then a = b
corr. ∠s, AB // CD
同位角,AB // CD
If a = b, then AB // CD
corr. ∠s equal
同位角相等
QYivIskkN2XPdoRR4DVtRO ZpqBjCF1qx7U8c3LI69IFnNBs5vYfZQ4LBtxrordzwIj1yfDn8 d8O2j lirk6vLl lWUs2 LadzIZPqi JK3TtQdRfufp0biawPgG 2R jiGdFemqsJdrrdJ oMeXsoIf AB //CD, then a = b
alt. ∠s, AB // CD
錯角,AB // CD
If a = b, then AB //CD
alt. ∠s equal
錯角相等
xQ2OX3W4tDclY 1cG3hqFLyyDhscH 9Z9zVaXCvygNmymA5GJg7aS1P0TNIf AB // CD,
then a + b = 180°
int. ∠s, AB // CD
同旁內角,AB //CD
If a + b = 180°, then AB // CD
int. ∠s supp. 
同旁內角互補

凸多邊形的角 (Angles of Convex Polygon)

Situation 情況Properties 特性
a_1 + a_2 + a_3 + … + a_n = (n − 2) × 180°
∠ sum of polygon 多邊形的內角和
→ Regular 正多邊形
Each interior angle 每隻內角 = \frac{(n − 2) × 180°}{n}
ggT6hEsXrLf3l A gKa34eiwI9 k9rZEg7HYIa2butB83CLAhb7NgcEVQX QKp0C3n LqGaJzrTjr puDfNViDkI6jtiQCCUgnH bVTtT2NmklZgl5fxq0bNu09oO4RXAouOmndl0K2 ng2FwnBvAtQ x_1 + x_2 + x_3 + … + x_n = 360°
sum of ext. ∠s of polygon 多邊形的外角和
→ Regular 正多邊形
Each exterior angle 每隻外角= \frac{360º}{n}

全等三角形及相似三角形 (Congruent Triangles and Similar Triangles)

Congruent Triangles 全等三角形
(P.S. congruent 全等 Δ 係 similar 相似 Δ其中一種)
Similar Triangles 相似三角形
yWsEj7ZnJjRESgR7gOEdNsH vPOGKaTbY8lpIpHBUt8qjQjzoDlbiSopG QsIpDML0jjCaY4Y3hZ3SeNaYx lmKNSKIfWf2YnbQrJCisLFRj7fgrK4an3fdp ysg3NBSSe6R3Ngp9cr5X0HWm7WH5VIJnKl
i66L bNL9jXNi96SYmmYN4w2QgjPFxYRBKHvSCFV4OAvkRBPcwD6I2JimAo9Bh0 2HnbpPN gV1Te7LJkmKFi6dF三邊成比例
id8pMCodgaD8OhpEnDCpBKJqq3pjY aNR00QUjDtbRv9QPYYU SLliU3
skdyeSl455askb8CIQhYbUZvTgdosDXJ1R0zl2FDTXnXezWz0EQXcw9ovU3Ba7tHTdmdaPh4ha8G6ZPsRKTwUL兩邊成比例且夾角
GqTJDlv0yPHNMSFa80fGHEScGCKUdni9H4WWCDJEUCABZyFbvG4H7WkY9fR FnP3U2xuINh9Zgw1l3S0Cs8tmirlxnjQQgE3BDzQdn7sB ZZZ WwSvuSVN21FwuNVQrArwG9rMzHs3 auWRCHH3VS5s
QrsRMdjE Sol28GDniMvzpWJXU3BWHTMNJq6bEhbpuctKSYzuNj zx Qd8mklUwr5edgSqDRJQAhxCNLGztZKzG9jWahvTA fPbIevZBRs Pq7ffiIzLZu8uykSVC7xC6duQn gbThsDMzqEcA8Xa8/
8sCSy8r6rGM9vklwUq BH7aPXK1bg90DG8GLQCCbwLho5hKYfwCAKaZJXTUl9d1raFV0aQf4XyPwJaxPFBey8KNFSzcLFUWJ Nxb3hQEYCrv th7tFjtCEzVx 9jmtDfWNc4L 5GaS76v3a56URbd9k/
6q567CPhQ ITCAk5sxfGRThr3r7cvcIcu 9ATe1p9pItCnHZ6v32U0ChC2h6GWZi1lPOqouufFNCV67JPdktO giUmWI7fs4Q7fLgx NId2KZ4K8ZJK R6s
If ΔABC ≅ΔXYZ, then ∠A = ∠X, ∠B = ∠Y, ∠C = ∠Z (corr. ∠s, ≅Δs) 全等三角形對應角
AB = XY, BC = YZ, CA = ZX (corr. sides, ≅Δs)
aRB lUtk041o40GVmr H53L8 ScIhULsNW6mGD7VaORvRKVVATfcnXqEPSo kGMzK0mw8PTe
If ΔABC ~ ΔXYZ, then ∠A = ∠X, ∠B = ∠Y, ∠C = ∠Z (corr. ∠s, ≅Δs)
\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX} (corr. sides, ~Δs) 相似三角形對應邊

四邊形的特性 (Properties of quadrilateral)

Situation 情況Properties 特性Prove 證明
5fChdqhZaUtBalMvC3LHFb2hrsGZsxSkqQrcm1qDYkKjuA6sR5dYbySq8pcNN9G1e29OzrViu ZJUsLdK7QgSbWm9ZTNp FOokdYgJxcJd8kCfQ FJYLcqe2l1uycFfvXPMp jfE73jGmcUESmqo Q∠P + ∠Q = 180°
∠R + ∠S = 180º
Prop. of trapezium 梯形性質
/
8uHMxgRNXXsqfyfrzMeXQRr5vvCV QfVSSMDcT3kuNS0zaDhqocv1F mW lQcXB4dsWZE EZTerjfCq7ot5H 9uT6VZS81IYJYsODTcgnzEC2vynhECeyupnfZ9W5UNWuTVnXXyFmpDBTuQBgnhJK090º
+ all prop. of //gram 所有平行四邊形性質
/
s3jWD7Ebk9Xg7 hnvGdS6LK5uD5EXg6gssZkW7A2PK9XXOmKNUzClvzi7mP4 p e997h6sk 054Ez1yvM33vM2ZpyD3d MvkNeYlhyesXt3LDJGOFAD = BC & AB = DC
∠A = ∠C & ∠B = ∠D
AO = CO & BO = DO
AD = BC & AD // BC
prop. of //gram 平行四邊形性質
opp. sides equal 對邊相等
opp. ∠s equal 對角相等
diags. bisect each other 對角線互相平分
2 sides equal and //
  一組對邊相等且平行
5Qx9SeTMdTdWCFPGfWDV66WIHc3QK vbV1kh7czTYP6kSWMM64KRVuTeQnDqRqtrjNZhKeltlp0GEJDANBrH3vKohLIa8OhIJKFeWRhaHKQfZ40qKG5LBiUz7ksqXJZK1kmOmw9kzjuk2MhI01BXsbAdiagonals are ⊥ 對角線互相垂直
4 sides equal 四邊相等
Interiors are bisected by diagonals 對角線平分頂角
+ all prop. of //gram 所有平行四邊形性質
Properties of rhombus 菱形性質
/

三角形性質 (The Properties of Triangle)

Triangle 三角形Properties 性質
Right-angled triangle 直角三角形
nk6vujcy03x2UmdNEnrDlG5OrN4c30w3yJ MAXKxrvyIB99OkjSV2giAhLeIqTo1CtOQRRqSYAP88zWK6pH EcoT3j6KXuTHt2Su0nDXw1GUZptqj0 OnEQcjN9A0ZnwDzaJ9M1qN3ppmG2O nF0BJ4
🌟見到直角唔係畢氏定理就係sin/cos/tan
sin θ = \frac{opp.對}{hyp.斜} = \frac{a}{c}
cos θ = \frac{adj.鄰}{hyp.斜} = \frac{b}{c}
tan θ = \frac{opp.對}{adj.鄰} = \frac{a}{b}
 
a^2 + b^2 = c^2 (pyth. Them. 畢氏定理)
If a^2 + b^2 = c^2, then ∠C = 90º (Converse of Pyth. Thm. 畢氏定理逆定理)
Isosceles triangle 等腰三角形
sI9pkQORkg7NE19Eu3PBHkvUvc6SIKkSlPA1BLQNKwTQEL 1 Gvgnbwx5Slb8 TYx 3ohRCApMfPVwArIaH4aRmkwxnjgMJtqJwp3CCCOm8TecxifRxPhYXdWfY637Ifum M iNPziWayJVvOId77A8
If AB = AC, then ∠ABC = ∠ACB (base ∠s, isos. Δ  等腰Δ底角)
If ∠ABC = ∠ACB, then AB = AC (sides opp. equal ∠s 等角對邊相等)
 
If ΔABC is an isos. Δ,
then AD ⊥ BC & BD = DC & ∠BAD = ∠CAD (prop. of isos. Δ 等腰Δ性質)
Equilateral Triangle 等邊三角形
If AB = BC = CA, then ∠A, ∠B, ∠C = 60º, vice versa (prop. of equil. Δ  等邊Δ性質)

中點定理及截線定理 (Mid-point Theorem and Intercept Theorem)

Situation 情況Theorem 定理
YfG8Yq1h7SPpvGn LWj3Rw6znGv2wDasc7jCeo5VvJA4yf6sOQguSuVznTRO1mJfkOe3K1BhSP2HRCH5ayDqTIcrTKFhQVRUZYDV45Zkrpy mCGT5Z3pXojW4oHUqgrisCj6TwVeGKM9C tRvo8oBWUIf AE = EB and AF = FC, then EF // BC & EF = \frac{1}{2}BC (Mid-pt. theorem 中點定理)
If AE = EB and EF // BC, then AF = FC (intercept theorem 截線定理)
de4sUKsLfxBKGLJHHxXRRFbSWjFVaX1SFq2UIwbkZj hol6If AC = CE and AB // CD // EF, then BD = DF (intercept theorem 截線定理)

三角不等式 (Triangle Inequality)

irAE4pIeGPUHOj Hd7SpogYmwWSfa + b > c
b + c > a
c + a > b

正弦餘弦公式 (Sine Consine Formula)

Sine formula 正弦公式 (2邊2角):
\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}
Consine formula 餘弦公式 (3邊1角):
c^2 = a^2 + b^22abcosC

三角形的中心 (Center Formula)

內心-角平分線
zJ646m0lBrmljQjLy1Hp75bQLqfKFjRlBiAPB iu4zOWBkWqGspLHS voUHHJ2wY
外心-垂直平分線
垂心-高線
Hs0QRiVMoOgC a9oUOeZE9ouqqHwt02nTMHkF1ShKKhCD7Dxmn8qpGQzV p09RiyrngyNDgU aa8MpaheAyl8JcwD7UbUK0CosUPFAornWSpJNLUotbS1hJLTyNa9Kbr1T0Lk7G qU32sn ViFOwFs
形心-中線
l B9weoURcb0u7Q2AKEaAFp4tmK2uKFzub4mnbcmKBHADlssz8rL9rmhBIdtBrUQQTERDvJqtrrz4F3B

對稱 (Symmetry)

Solid 立體Plane of reflection 反射平面Axis of rotation 旋轉軸
Cube 立方體913
Tetrahedron 四面體67
Regular octahedron 正八面體913

Axis of symmetry of n-sided regular polygon 正n邊形的對稱數= n
Order of rotational symmetry of n-sided regular polygon 正n邊形的旋轉折式數目 = n
Number of diagonals of n-sided polygon 正n邊形的對角線 = \frac{n(n − 3)}{2}

數學公式適用題目:

2023 DSE P2 Q18

根據圖中所示,下列何者必為正確?

According to the figure, which of the following must be true?

2 5
【數學公式】數學公式大全(上集)+DSE卷二例題分享! 征服DSE數學考試無難度! 72

I. a+b=90º

II. c+d=180º

III. a+b+c=d

A. 只有 I 及 II (I and II only)

B. 只有 I 及 III (I and III only)

C. 只有 II 及 III (II and III only)

D. I、II 及 III (I, II and III)

答案:A

2023 DSE P2 Q19

已知ABCD為一菱形。將AC與BD的交點記為E。下列何者必為正確?

It is given that ABCD is a rhombus. Denote the point of intersection of AC and BD by E. Which of the following must be true?

I. AE  =  BE 

II. \frac{AE}{AC} = \frac{BE}{BD}  

III. AE^2+BE^2=CD^2

A. 只有 I 及 II (I and II only)

B. 只有 I 及 III (I and III only)

C. 只有 II 及 III (II and III only)

D. I、II 及 III (I, II and III)

答案:C

數學公式-Variations 變分

Direct variations 正變 (未知數寫分子):
If y varies directly as x, then y = kx for some non-zero constant k. 若y 隨x而正變,則y = kx,其中k為非零常數。
Inverse variations 反變 (未知數寫分母):
If y varies inversely as x, then y = \frac{k}{x} for some non-zero constant k. 若 y 隨 x反變,則y = \frac{k}{x} ,其中k為非零常數。 
Joint variations 聯變:
If z varies inversely as x and y, then z = kxy for some non-zero constant k. 若z 隨x 及y聯變, 則z = kxy,其中k為非零常數。
Partial variations 部分變:
→ If z is partly constant and partly varies directly as x, then z = k_{1} + k_{2}x for some non-zero constant k.  若z 部分為常數及部分隨x正變, 則z = k_{1} + k_{2}x,其中k為非零常數。
→ If z partly varies directly as x and partly varies inversely as y, then z = k_{1}x + \frac{k_{2}}{y} for some non-zero constant k. 若z 部分隨x 正變及部分隨y反變, 則z = k_{1} + \frac{k_{2}}{y},其中k為非零常數。

數學公式適用題目:

2022 DSE P2 Q13

若 u 隨 v 的平方根正變且隨 w 反變,則下列何者正確?

If u varies directly as the square root of v and inversely as w , which of the following are true?

I. u^2 隨 v 正變且隨 w 的平方反變。

u^2 varies directly as v and inversely as the square of w.

II. v 隨 w 正變且隨 u 的平方根反變。

v varies directly as w and inversely as the square root of u.

III. w 隨 v 的平方根正變且隨 u 反變。

w varies directly as the square root of v and inversely as u.

A. 只有 I 及 II (I and II only)

B. 只有 I 及 III (I and III only)

C. 只有 II 及 III (II and III only)

D. I、II 及 III (I, II and III)

答案:B

2023 DSE P2 Q13

已知 z 隨 x 的平方及 y 的立方根正變。當 x=12 及 y=64 時,z=36。當 x=16 及 y=729 時,z=

It is given that z varies as the square of x and the cube root of y. When x=12 and y=64, z=36. When x=16 and y=729, z=

A. 108

B. 144

C. 162

D. 216

答案:B

大家記得留意數學公式大全(下集),我們將會講述有關多項式、複數、二次方程、率與比、誤差、恆等、百分比、二次函數以及整數指數律的數學公式!這些公式是DSE數學考試中非常重要的一部分,掌握它們可以幫助學生更好地應對考試,提高自己的數學成績和能力。


如對於DSE數學有任何問題,如私人補習、網上補習等,或者想知道更多關於DSE的資訊,歡迎Follow「學博教育中心 Learn Smart Education」 Facebook pageIG,以及 瀏覽 GJ MATHS 的 數學資源網站IG,入面有齊所有你想知道和你需要知道的DSE資訊,助你全力應戰DSE!!

精選貼文

May 9, 2024
【中一數學】探索中一數學的奧秘|附送獨家課題練習
September 29, 2023
【數學補習邊個好】補習模式大比較:分析當中優劣&補習好處
July 25, 2023
【數學符號】數學符號大解密:從高中DSE到大學數學,一次看懂所有數學符號!
July 21, 2023
【數學家】8位數學家的故事:探索偉大數學家的生平和理論!
June 27, 2023
【數學公式】數學公式大全(下集)+DSE卷二例題分享!高效準備DSE數學考試!

熱門貼文

為你推薦
【數學公式】數學公式大全...
June 27, 2023
上次我們分享了DSE數學公式大全(上集),...